Reduced Basis Approximation for Nonlinear Parametrized Evolution Equations based on Empirical Operator Interpolation

نویسندگان

  • Martin Drohmann
  • Bernard Haasdonk
  • Mario Ohlberger
چکیده

We present a new approach to treat nonlinear operators in reduced basis approximations of parametrized evolution equations. Our approach is based on empirical interpolation of nonlinear differential operators and their Frechet derivatives. Efficient offline/online decomposition is obtained for discrete operators that allow an efficient evaluation for a certain set of interpolation functionals. An a posteriori error estimate for the resulting reduced basis method is derived and analyzed numerically. The approach is applied to nonlinear parabolic and hyperbolic equations based on explicit or implicit finite volume discretizations. We show that the resulting reduced scheme is able to capture the evolution of both smooth and discontinuous solutions. In case of symmetries of the problem, the approach realizes an automatic and intuitive space-compression or even space-dimensionality reduction. We perform empirical investigations of the error convergence and runtimes. In all cases we obtain a good runtime acceleration that grows with the problem’s size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical model reduction of nonlinear partial differential equations based on the adaptive empirical projection method and reduced basis techniques

In this paper we extend the hierarchical model reduction framework based on reduced basis techniques recently introduced in [46] for the application to nonlinear partial differential equations. The major new ingredient to accomplish this goal is the introduction of the adaptive empirical projection method, which is an adaptive integration algorithm based on the (generalized) empirical interpola...

متن کامل

Adaptive Reduced Basis Methods for Nonlinear Convection–Diffusion Equations

Many applications from science and engineering are based on parametrized evolution equations and depend on time-consuming parameter studies or need to ensure critical constraints on the simulation time. For both settings, model order reduction by the reduced basis methods is a suitable means to reduce computational time. In this proceedings, we show the applicability of the reduced basis framew...

متن کامل

A Model Reduction Framework for Efficient Simulation of Li-Ion Batteries

[1] Latz, A., Zausch, J.: Thermodynamic consistent transport theory of li-ion batteries. Journal of Power Sources 196(6), 3296 – 3302 (2011) [2] Popov, P., Vutov, Y., Margenov, S., Iliev, O.: Finite volume discretization of equations describing nonlinear diffusion in li-ion batteries. In: Numerical Methods and Applications, LNCS 6046, pp. 338–346. Springer (2011) [3] Drohmann, M., Haasdonk, B.,...

متن کامل

A Posteriori Error Bounds for Reduced Basis Approximations of Nonaffine and Nonlinear Parabolic Partial Differential Equations

We present a posteriori error bounds for reduced basis approximations of parabolic partial differential equations involving (i) a nonaffine dependence on the parameter and (ii) a nonlinear dependence on the field variable. The method employs the Empirical Interpolation Method in order to construct “affine” coefficient-function approximations of the “nonaffine” (or nonlinear) parametrized functi...

متن کامل

A Reduced Basis Method for Evolution Schemes with Parameter-dependent Explicit Operators

During the last decades, reduced basis (RB) methods have been developed to a wide methodology for model reduction of problems that are governed by parametrized partial differential equations (P2DEs ). In particular equations of elliptic and parabolic type for linear, low polynomial or monotonic nonlinearities have been treated successfully by RB methods using finite element schemes. Due to the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2012